Triangel (av latin: triangulum), trekant, trehörning eller trigon[1][2][3][4][a] är en tresidig polygon och en av de grundläggande geometriska formerna. En triangel begränsas av tre räta linjer vars skärningpunkter bildar triangelns hörn.

Triangel är en tresidig polygon

Triangelns hörn betecknas vanligen med A, B, C och motsvarande vinklar med . Triangeln kan refereras till som triangeln ABC eller betecknas .

Sidan a säges vara motstående sida till hörnet A och vinkeln . Hörnet A sägs vara motstående hörn till sidan a.

Semiperimetern är triangelns halva omkrets eller

Artikeln behandlar trianglar i planet; trianglar på sfäriska och hyperboliska ytor har särskilda artiklar.

Typer av trianglar

redigera
 

En triangel är

  • Spetsvinklig om alla vinklar är mindre än 90 grader
  • Rätvinklig om en vinkel är rät (90 grader eller   radianer)
  • Trubbvinklig om en av vinklarna är större än 90 grader
 
  • Likbent om två sidor är lika långa
  • Liksidig om alla sidor är lika långa

Vinklar

redigera
 

Supplementvinkeln till en vinkel i en triangel kallas yttre vinkel.

Vinkelsumma

redigera
 

En linje som dras genom ett av triangelns hörn och är parallell med motstående sida, visar att triangelns vinkelsumma är 180 grader.

Höjder

redigera

En triangels höjder är normaler dragna från en sida, eller en sidas förlängning, till motstående hörn. Höjderna skär varandra i en punkt.

 

Höjden mot sidan a har längden

 

där s är semiperimetern (triangelns halva omkrets). Övriga längder beräknas på motsvarande sätt.

Bisektriser

redigera
Huvudartikel: Bisektris
 

En bisektris delar en av triangelns vinklar i två lika delar.

Bisektrisen till en yttre vinkel kallas yttre bisektris.

Bisektriserna skär varandra i en punkt som också är den inskrivna cirkelns centrum.

Bisektrisens längd

redigera
 
Bisektrissatsen

Längden av bisektrisen från hörnet A är

 

Bisektrissatsen

redigera

En bisektris delar motstående sida i samma proportioner som längderna av de sidor som bildar den delade vinkeln:

  (1)

Drag sidan CD med längden AC parallell med sidan AB. Då är trianglarna CDE och ABE likformiga och sambandet (1) följer.

Medianer

redigera
 

Medianen är en linje från ett av triangelns hörn till motstående sidas mittpunkt. Medianerna skär varandra i triangelns geometriska tyngdpunkt.

Medianernas längder är

 
 
 

Triangelns area är en höjd multiplicerad med motsvarande sida dividerat med 2[5] eller

 

Arean kan också beräknas med herons formel som

 

där s är semiperimetern (triangelns halva omkrets).

Arean kan även beräknas med den trigonometriska sinusfunktionen enligt areasatsen

 

Med integral

redigera
 

Arean av en triangel kan beräknas med integralen

 

Med vektorer

redigera
 
Triangelns area är hälften av arean av en parallellogram med samma bas och höjd

Arean av en parallellogram i ett tredimensionellt euklidiskt rum kan beräknas med hjälp av vektorer. Låt vektorerna AB och AC svara mot sträckan från A till B respektive A till C. Arean av parallellogrammen ABCD är

 

vilket är magnituden av kryssprodukten av vektorerna AB och AC. Arean av triangeln ABC är hälften av denna

 

Triangelns area kan med hjälp av skalärprodukt skrivas som

 

I en tvådimensionell euklidisk rymd kan vektorn AB skrivas som (x1,y1) och AC som (x2,y2), vilket ger arean som

 

Samband mellan sidor och vinklar

redigera
 
 
 
 

Om till exempel vinkeln   är rät och då   erhålls Pytagoras sats

 
 
 

Cirklar

redigera

Omskrivna cirkeln

redigera
 

Den omskrivna cirkelns centrum ligger i skärningspunkten av sidornas mittpunktsnormaler och

dess radie är

 

Inskrivna cirkeln

redigera
 

Den inskrivna cirkelns mittpunkt är bisektrisernas skärningspunkt och dess radie är

 

där s är semiperimetern.

Vidskrivna cirkeln

redigera
 

Bisektrisen från A och bisektrisen från B's yttre vinkel skär varandra i den vidskrivna cirkelns mittpunkt. Den vidskrivna cirkelns radie om cirkeln tangerar sidan a är

 

där T är triangelns area och s semiperimetern.

Kongruensfall

redigera

Två trianglar är kongruenta om de kan fås att sammanfalla genom rotation, translation och spegling.

Första kongruensfallet (SVS, sida-vinkel-sida)

redigera
Om för ABC och A'B'C' gäller att AB = A'B', AC = A'C' och A = A', så är ABC kongruent med A'B'C'.

Andra kongruensfallet (SSS, sida-sida-sida)

redigera
Om för ABC och A'B'C' gäller att AB = A'B', AC = A'C' och BC = B'C', så är ABC kongruent med A'B'C'.

Tredje kongruensfallet (VSV, vinkel-sida-vinkel)

redigera
Om för ABC och A'B'C' gäller att AB = A'B', A = A' och B =B', så är ABC kongruent med A'B'C'.

Likformighet

redigera
 

Om det för två trianglar med sidorna

  respektive  , existerar ett tal  , en skalfaktor, sådant att

 

sägs trianglarna vara likformiga.

Likformighet betecknas

 

Första likformighetsfallet (SVS, Sida-Vinkel-Sida)

redigera

Om för två trianglar ABC och A'B'C'

 

och

 

är trianglarna likformiga.

Andra likformighetsfallet (SSS, Sida-Sida-Sida)

redigera

Om för två trianglar ABC och A'B'C'

 

är trianglarna likformiga.

Tredje likformighetsfallet (VV, Vinkel-Vinkel)

redigera

Om för två trianglar ABC och A'B'C'

 

är trianglarna likformiga. Den tredje vinkeln C följer av att summan av alla vinklar i en triangel är 180 grader.

Triangelns tyngdpunkt

redigera
 

En triangelformad ytas masscentrum (tyngdpunkt) ligger på en tredjedel av höjden räknat från basen.

Medianernas skärningspunkt sammanfaller med masscentrum.

 

Tyngdpunktens avstånd till en sida kan beräknas med en integral. Vi kan anta att ytdensiteten (massa per areaenhet) är = 1. Arean   utövar då momentet   med avseende på origo, vilket för hela triangeln ger

 

där A är triangelns area. Det moment triangeln utövar kan anses angripa i tyngdpunkten vilket ger

 

Med lodlina

redigera
 

Det går att finna ett tunt och plant föremåls tyngdpunkt med hjälp av en lodlina. Lodlina och (i detta fall) triangel hängs fritt från en fästpunkt och lodlinjen markeras. Detta upprepas för en andra fästpunkt. Lodlinjernas skärningspunkt är tyngdpunktens läge.

Se även

redigera

Anmärkningar

redigera

Referenser

redigera
  1. ^ Svenska Akademiens ordbok: triangel
  2. ^ Svenska Akademiens ordbok: trekant
  3. ^ Svenska Akademiens ordbok: trehörning
  4. ^ Svenska Akademiens ordbok: trigon
  5. ^ ”Flächenberechnung” (på tyska). Schlag nach!: 100000 Tatsachen aus allen Wissensgebieten. Fachrekationen des Bibliographischen Instituts & Springer-Verlag. 2012. sid. 29 

Externa länkar

redigera