Inom matematiken, specifikt linjär algebra, är en matrisfaktorisering en uppdelning av en matris i flera matriser på ett speciellt sätt. Det finns många sorters matrisfaktoriseringar, med tillämpningar inom olika sorters problem.

Faktoriseringar för att lösa linjära ekvationssystemRedigera

LU-faktoriseringRedigera

Huvudartikel: LU-faktorisering

För alla kvadratiska matriser A, kan matrisen delas upp i så att   för en nedåt triangulär matris L och en uppåt triangulär matris U. Detta kan sedan användas för att snabbare lösa ekvationssystem av typen  .

CholeskyfaktoriseringRedigera

Choleskyfaktorisering kan ses som ett specialfall av LU-faktorisering; om matrisen A är symmetrisk och positivt definit kan A representeras av   för en uppåt triangulär matris U.

QR-faktoriseringRedigera

Huvudartikel: QR-faktorisering

QR-faktorisering kan göras för alla  -matriser A. Matrisen A skrivs som   för en ortogonal matris Q och en uppåt triangulär matris R. Då Q är ortogonal ( ) kan ekvationssystemet   skrivas  , som är lättare att lösa.

Uppdelningar med egenvärden och liknandeRedigera

DiagonaliseringRedigera

Huvudartikel: Diagonalisering

Om en  -matris A har n egenvärden och lika många egenvektorer (om egenvärdena är distinkta så finns lika många egenvektorer), kan matrisen skrivas på formen   där D är en diagonalmatris och T är en matris med egenvektorer. I vissa fall kan T göras till en ortogonal matris U så att  . Se även spektralsatsen.

Jordans normalformRedigera

Huvudartikel: Jordans normalform

För en given kvadratisk matris A blir jordans normalform  , där T utgörs av A:s egenvektorer och J är en blockdiagonal matris. Varje block i J är bidiagonalt med A:s egenvärden i diagonalen och antingen ettor eller nollor i superdiagonalen. Diagonalisering är ett specialfall av jordans normalform.

SingulärvärdesuppdelningRedigera

Varje  -matris A kan singulärvärdesuppdelas, enligt   för unitära matriser U och V och så att D har storleken   och endast har värden (dessa värden kallas singulärvärden) i diagonalen.   betecknar det hermiteska konjugatet till V.

  Matematikportalen – portalen för matematik på svenskspråkiga Wikipedia.