Materiell ekvivalens och logisk ekvivalens är grundläggande ekvivalensrelationer i den klassiska logiken.

 Logisk operator (Logisk grind
Se även

Satserna S1 och S2 sägs vara materiellt ekvivalenta om satserna har samma sanningsvärde, det vill säga att antingen båda är sanna eller båda är falska. Förhållandet symboliseras med S1S2 och kan exemplifieras med satsen pq ↔ ~q→~p, vilken är en tautologi.

Satserna S1 och S2 sägs vara logiskt ekvivalenta om "S1S2" är en logisk sanning, som exempelvis satsen S3: "x = yy = x".

Eftersom alla tautologier är logiska sanningar så är två satser, som är materiellt ekvivalenta även logiskt ekvivalenta. Alla logiska sanningar är dock inte tautologier. Exempelvis är satsen "x = x" och satsen S3 ovan logiska sanningar men inte tautologier.

Tabell över logiska ekvivalenser

redigera
Ekvivalenser Benämning
 
 
Identitetslagar
 
 
Dominanslagar
 
 
Idempotenta lagar
  Dubbel negationslag
 
 
Kommunativa lagar
 
 
Associativa lagar
 
 
Distributiva lagar
 
 
De Morgans lagar
 
 
Absorbativa lagar
 
 
Negationslagar

där S = sann och F = falsk.

Exempel

redigera

Satserna nedan är kontrapositionerade, det vill säga av typen pq respektive ~q → ~p och är enligt ovan materiellt ekvivalenta och således logiskt ekvivalenta.

  1. Om min klocka går rätt så är tåget försenat.
  2. Om tåget inte är försenat så går min klocka inte rätt.

Ekvivalensen mellan kontrapositionerade satser är en tautologi, oberoende av satsernas betydelse eller kausala samband.

Materiell ekvivalens

redigera
 
Materiell ekvivalens. A respektive B är antingen båda sanna eller båda falska

Materiell ekvivalens är den klassiska logikens representation av den språkliga betydelsen "p om och endast om q", som skrivs pq och har sanningstabellen

p q pq
S S S
S F F
F S F
F F S

där S står för sant och F för falskt.

Ekvivalensen är således sann endast om p och q båda är sanna eller båda falska.

En ekvivalens kan sägas utgöra en "dubbel implikation", det vill säga att pq har samma betydelse som satserna pq och qp tillsammans:

p q pq qp (pq) ∧ (qp)
S S S S S
S F F S F
F S S F F
F F S S S

Inom matematiken används vanligen en dubbelskriven pil  , för att beteckna ekvivalens. Exempel: x2 = 1 ⇔ x = 1 eller x = -1.

Tekniska lösningar

redigera

I elektriska kretsar, pneumatik, hydraulik, mekanik etc kan funktioner som motsvarar ekvivalens realiseras.

Trappomkastare

redigera
 
En trappomkastare realiserar funktionen materiell ekvivalens.

Se även

redigera

Källor

redigera
  • Geoffrey Hunter, Metalogic. An Introduction to the Metatheory of Standard First-Order Logic. MacMillan 1971.
  • Georg Henrik von Wright, Logik, filosofi och språk, Berlingske 1957.
  • Howard Kahane, Logic and Philosophy, A Modern Introduction, Wadsworth Publishing Company, Belmont California, 1969.
  • Göran Hermerén, Logik, Studentlitteratur, Håkan Ohlssons Boktryckeri Lund 1967.