Uppslagsordet ”Eller” leder hit. För efternamnet Eller, se Eller (efternamn). För andra betydelser, se Eller (olika betydelser).
Uppslagsordet ”OR” leder hit. För andra betydelser, se OR (olika betydelser).

Disjunktion, som i satslogiken är liktydigt med inklusiv disjunktion, är en logisk operator. Generellt skiljer man inom logik och språk på inklusiv disjunktion eller svag disjunktion, som uttrycks med "eller", och exklusiv disjunktion eller stark disjunktion, som uttrycks med "antingen eller".

 Logisk operator (Logisk grind
Se även
OR: A eller B
NOR: varken A eller B
XOR: antingen A eller B

Påståendet, p eller q, är sant om minst en av p och q är sann och påståendet, antingen p eller q, är sant om exakt en av p och q är sann.

Det finns många skillnader mellan normal användning av "eller" i talspråket och motsvarande operator i satslogiken. Ofta förutsätts någon form av naturligt eller rimligt samband mellan leden i disjunktionen i talspråket.

I satsen: "Te eller kaffe serveras efter desserten", uppfattas disjunktionen som stark medan den i satsen: "Pensionärer eller barn har fri entré", uppfattas som svag.

Representation

redigera

Inklusiv disjunktion betecknas med   och exklusiv disjunktion med  . I boolesk algebra betecknas inklusiv disjunktion med  . Exklusiv disjunktion har i den booleska algebran ingen distinkt symbol, men betecknas i andra sammanhang med  , vilket står för räkning modulo-2.

När inte symbolen   är tillgänglig skrivs den ibland ut som XOR. I programmeringsspråken Java, C och C++ används insättningstecknet (alltså ^).

Sanningsfunktion och sanningstabell

redigera

Disjunktionens egenskaper beskrivs i logiken som en funktion – en sanningsfunktion – av de ingående påståendenas sanningsvärden. Detta beskrivs med sanningstabeller, där F = falsk och S = sann:

Inklusiv disjunktion
p q p eller q
F F F
F S S
S F S
S S S
Exklusiv disjunktion
p q Antingen p eller q
F F F
F S S
S F S
S S F

Boolesk algebra

redigera

I boolesk algebra skrivs inklusiv disjunktion och exklusiv disjunktion enligt

p eller q = p + q
Antingen p eller q = p · q ' + p ' · q, där p ' och q ' är inverserna till p respektive q.

Med talen 0 för falsk och 1 för sann och de booleska reglerna 1 + 1 = 1 och 1 ⊕ 1 = 0 fås tabellerna

Inklusiv disjunktion
p q p eller q
0 0 0
0 1 1
1 0 1
1 1 1
Exklusiv disjunktion
p q Antingen p eller q
0 0 0
0 1 1
1 0 1
1 1 0

I en variant av boolesk algebra, där minustecknet införts och där vanliga räkneregler gäller, det vill säga utan specialregler för de matematiska operationerna + och ·, beskrivs de två disjunktionerna med sanningsfunktionerna

p OR q = p + q - p·q
p XOR q = p + q - 2·p·q

med egenskaper enligt tabellerna

Inklusiv disjunktion
p q p + q - p·q
0 0 0
0 1 1
1 0 1
1 1 1
Exklusiv disjunktion
p q p + q - 2·p·q
0 0 0
0 1 1
1 0 1
1 1 0

Tekniska lösningar

redigera

I elektriska kretsar, pneumatik, hydraulik, mekanik etcetera kan funktioner som motsvarar disjunktioner realiseras, som i kombination med andra logiska funktioner kan byggas ihop till komplex funktionalitet. Några exempel:

Parallellkoppling

redigera

Om till exempel två parallellkopplade brytare seriekopplas med en lampa måste båda brytarna vara från för att lampan ska vara släckt; i annat fall tänds lampan. Detta realiserar en inklusiv disjunktion.

 
Parallellkoppling

Trappomkastare

redigera

En korsad trappomkastare realiserar en exklusiv disjunktion (se bild).

 
Korsad trappomkastare

OR-grind och XOR-grind

redigera

I digitaltekniken realiseras samma funktioner med logiska byggblock, OR-grind respektive XOR-grind. "Värdena" är här signalena "hög" och "låg" som motsvarar bestämda spänningsintervall. Dessa betecknas vanligen med 1 = hög och 0 = låg.

 
IEC-symbol
 
US-symbol
Inklusiv disjunktion
A B A OR B
1 1 1
1 0 1
0 1 1
0 0 0
 
IEC-symbol
 
US-symbol
Exklusiv disjunktion
A B A XOR B
1 1 0
1 0 1
0 1 1
0 0 0

Ett integrerat kretsblock som tillhandahåller OR-grindar är till exempel 7432 som innehåller fyra separata grindar. 74386 innehåller fyra separata XOR-grindar.

Spelteori

redigera

Inom spelteori, heter XOR nim-summa och betecknas  , från att den används i analys av spelet Nim.

Referenser

redigera
  • Karl-Johan Bäckström, Diskret matematik, Studentlitteratur, Lund 1986.
  • Raymond M Smullyan, First-Order Logic, Springer-Verlag, Berlin Heidelberg, New York, 1968.
  • Elliott Mendelson, Elementary Logic, Oxford University Press, London 1965.
  • Göran Hermerén, Satslogik, Studentlitteratur, Lund 1967.
  • Per-Erik Danielsson, Digital teknik, Studentlitteratur, Lund 1974.