En ortogonalgrupp är ett matematisk begrepp inom linjär algebra. Ortogonalgruppen är en grupp bestående av linjära avbildningar med egenskapen att de bevarar skalärprodukten. Ortogonalgruppen är en undergrupp till den allmänna linjära gruppen

Formell definitionRedigera

Den n-dimensionella ortogonalgruppen över de reella talen är en grupp   där

  • mängden   är definierad som:
 

dvs funktioner   bevarar skalärprodukten och

  • gruppoperationen   är definierad som:
  för alla   och  ,

dvs gruppoperationen är sammansättning.

Man kan konstruera ortogonalgrupper över vilken kropp som helst, exempelvis de reella talen, komplexa talen och ändliga kroppar.

Likvärdiga definitionerRedigera

Det finns många likvärdiga definitioner för ortogonalgruppen.

IsometrierRedigera

Huvudartikel: Isometri

Mängden   kan också ses som alla linjär isometrier  . Mer precist,

 

dvs funktioner   bevarar avstånden.

OrtogonalmatriserRedigera

Huvudartikel: Ortogonalmatris

Eftersom det finns en bijektionen mellan alla linjära avbildningar   och matriser av storlek   så kan man se mängden   som alla ortogonalmatriser av storlek  . Mer precist,

 

då gruppoperationen är matrismultiplikation.

Speciella ortogonalgruppenRedigera

Alla matriser i   har egenskapen att

 

Om man tar alla matriser   med

 

får man en normal undergrupp som kallas den speciella ortogonalgruppen, betecknad  .

EgenskaperRedigera

Ortogonalgruppen har några egenskaper.

Lokalt kompakt topologisk gruppRedigera

Ortogonalgruppen är en lokalt kompakt topologisk grupp eftersom det är ett metriskt rum vars topologi är lokalt kompakt. Metriken är

 

för alla  

MåttstrukturRedigera

Eftersom ortogonalgruppen är en lokalt kompakt topologisk grupp finns ett unikt Haarmått i O(n) som ofta betecknas

 

där   är Borelalgebran i ortogonalgruppen O(n). Det här måttet kallas ofta ett vridningsinvariant mått.

Se ävenRedigera

ReferenserRedigera

  • Mattila, P. "Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability", Cambridge University Press, 1995.