Öppna huvudmenyn

Algebra över en kropp

(Omdirigerad från Normerad algebra)

En algebra över en kropp är inom matematik en algebraisk struktur, mer specifikt ett vektorrum med en operation som liknar multiplikation.

DefinitionRedigera

En algebra   över en kropp   är ett vektorrum   där det för varje par av element   finns en unik produkt   med egenskaperna:

  •  
  •  
  •  

för   och  .

  sägs vara en associativ algebra om

 

och en kommutativ algebra eller abelsk algebra om

 .

  kallas för algebra med neutralt element om det finns ett   så att

 .

Om   har ett neutralt element är den unik. För om man antar att det finns två neutrala element,   och  , får man att

  •   eftersom   är ett neutralt element.
  •   eftersom   är ett neutralt element.

Alltså är  .

En associativ algebra   kallas för en normerad algebra om den är ett normerat rum som uppfyller

  •   för alla  
  •   om   har ett neutralt element  .

En normerad algebra kallas för Banachalgebra, uppkallad efter Stefan Banach, om den är fullständig betraktad som ett normerat rum.

ExempelRedigera

Tredimensionellt euklidiskt rumRedigera

Inre produktrummet   med kryssprodukten införd är en algebra över kroppen av reella tal.

MatrisrumRedigera

Rummet av alla komplexa (eller reella) kvadratiska matriser med   rader är en icke-kommutativ associativ algebra med enhetsmatrisen som neutralt element. Genom att införa en matrisnorm blir algebran en Banachalgebra.

FunktionsrumRedigera

Rummet   av alla kontinuerliga funktioner på intervallet   är en Banachalgebra med operationen

  för alla  

  har det neutrala elementet 1 och normen

 .

Externa länkarRedigera