Öppna huvudmenyn

Laplaceoperatorn eller Laplaces operator är inom vektoranalysen en differentialoperator. Den har fått sitt namn efter Pierre Simon de Laplace. Laplaceoperatorn är lika med summan av alla andra ordningens partiella derivator av en beroende variabel. Laplaceoperatorn är en elliptisk operator med många tillämpningar inom fysiken och matematiken.

För ett skalärfält φ kan Laplaceoperatorn uttryckas div(grad φ), eller likvärdigt med hjälp av nabla-symbolen i kvadrat, ∇2:

Samt för vektorfält :

2 kan även skrivas som ∆.

Operatorn förekommer, till exempel, i Laplaces ekvation.

Innehåll

KoordinatrepresentationerRedigera

I två dimensionerRedigera

Laplaceoperatorn i två dimensioner ges av

 

där x och y är kartesiska koordinaterna i xy-planet.

I polära koordinater ges den av

 

I tre dimensionerRedigera

Laplaces operator är i kartesiska koordinater

 ,

i cylindriska koordinater

 ,

och i sfäriska koordinater

 

d'Alemberts operatorRedigera

En motsvarighet som ibland används inom relativitetsteori och i Minkowskis rumtid eller för att skriva ut vågekvationen betecknas   och kallas d'Alemberts operator. I 3+1-dimensionella rum (3 rumsdimensioner och 1 tidsdimension) har den formen

 

där c är ljushastigheten och t är tidskoordinaten.

Se ävenRedigera

  Matematikportalen – portalen för matematik på svenskspråkiga Wikipedia.