Öppna huvudmenyn
Gradienten till den 2-dimensionella funktionen f(x, y) = xe−(x2 + y2) markerad med blå pilar

En gradient är inom matematiken en multivariabel generalisering av derivatan. Medan derivatan kan definieras för funktioner av en variabel, ersätter gradienten derivatan för funktioner av flera variabler. Gradienten är en vektorvärd funktion, till skillnad från derivatan som är skalärvärd. Liksom derivatan representerar gradienten lutningen av funktionens graf. Mera precist, gradienten pekar i riktningen för funktionens största förändringstakt och dess storlek är grafens lutning i den riktningen. Koordinaterna för gradienten i en given punkt bestäms av det tangentplan som antas tillhöra grafens tangentrum. Denna karaktärisktiska egenskap hos gradienten tillåter att den definieras oberoende av koordinatsystemet, som ett vektorfält vars komponenter transformeras som kontravarianta vektorer.

Innehåll

DefinitionRedigera

 
Två typer av gradienter, cirkulär och linjär

Gradienten, om den existerar, ges i ett tredimensionellt kartesiskt koordinatsystem med euklidisk norm, som

 

där ∇ är nablaoperatorn och i, j, k är enhetsvektorerna i riktningarna för x, y respektive z.

Mera generellt kan gradienten skrivas som en funktional:

 

där   betecknar mängden av alla differentierbara funktioner från ℝN till ℝ.

En funktions gradient i en given punkt, är en vektor vars riktning, är den riktning i vilken förändringen av funktionen är störst och vektorns storlek är proportionell mot förändringens storlek.

En geometrisk tolkning av gradienten är att ∇ f(x) är en normal till nivåkurvan f(x) = C.

ExempelRedigera

Funktionen

 

har i kartesiska koordinater gradienten

 

I till exempel punkten (0.4, -0.7) är gradienten

 

Gradienter inom fysikenRedigera

Se ävenRedigera

Externa länkarRedigera