Inom matematiken är en Dirichletserie (benämnd efter Johann Peter Gustav Lejeune Dirichlet) en serie

där s är ett komplext tal och a är en följd av komplexa tal. Dirichleterier är specialfall av allmänna Dirichletserier.

Dirichletserier spelar en viktig roll inom analytisk talteori. Riemanns zetafunktion definieras oftast som en Dirichletserie, såsom även L-funktioner. Det har förmodats Selbergklassen satsifierar generaliserade Riemannhypotesen. Serierna är uppkallade efter Peter Gustav Lejeune Dirichlet.

ExempelRedigera

Den kändaste Dirichletserien är Riemanns zetafunktion

 

En annan serie är

 

där μ(n) är Möbiusfunktionen. Denna, och många andra serier kan bevisas genom att använda Möbiusinversion och Dirichletfaltning till kända serier.

Dirichlets L-funktion definieras som

 

där χ är en Dirichletkaraktär.

En viktig klass av Dirichletserier är Selbergklassen.

Se ävenRedigera

ReferenserRedigera

Den här artikeln är helt eller delvis baserad på material från engelskspråkiga Wikipedia, Dirichlet series, 11 mars 2014.

KällorRedigera