Sylows satser är en samling matematiska satser inom gruppteori uppkallade efter Ludwig Sylow[1] . Sylows första sats ger ett tillräckligt villkor för att en ändlig grupp ska ha en undergrupp av ordning där p är ett primtal. Sylows andra sats säger att två p-Sylowundergrupper är konjugerade och Sylows tredje sats uttalar sig om antalet p-Sylowundergrupper.

Sylows satser och p-Sylowundergrupper är mycket viktiga inom ändlig gruppteori, speciellt inom klassificering av ändliga enkla grupper. På sätt och vis är Sylows satser en omvändning till Lagranges sats.

p-SylowundergrupperRedigera

För ett primtal p är en p-grupp en grupp sådan att varje element i gruppen har ordning som är en potens av p. Dvs, om g är ett element i gruppen finns ett tal   så att   är identitetselementet. En p-undergrupp till en grupp G är en undergrupp som är en p-grupp.

En p-Sylowundergrupp H är en maximal p-undergrupp, dvs en p-undergrupp sådan att det finns någon annan p-undergrupp som innehåller H.

Sylows satserRedigera

Sylows första satsRedigera

Om G är en ändlig grupp, p är ett primtal och   delar   så finns en undergrupp i G av ordning  .

En enkel följdsats av den här satsen är Cauchys sats: För varje ändlig grupp G och varje primtal p som delar   så finns ett element i G med ordning p.

Sylows andra satsRedigera

För en ändlig grupp G och ett primtal p, så är alla p-Sylowundergrupper i G konjugerade (och därför isomorfa), dvs om H och K är p-Sylowundergrupper finns ett element g i G så att  .

Sylows tredje satsRedigera

Om G är en ändlig grupp, p är ett primtal som delar   och   är antalet p-Sylowundergrupper i G så är   en delare till   och  .

FöljderRedigera

Ur Sylows satser följer det att för varje primtal p är varje p-Sylowundergrupp av samma ordning,  , och omvänt är varje delgrupp av ordning   en p-Sylowundergrupp.

Ur Sylows tredje sats följer det att om   är p-Sylowundergruppen till G en normal delgrupp.

ExempelRedigera

Låt G vara en grupp med ordning 15 = 3 · 5. Sylows tredje sats ger att   måste dela 5 och vara 1 (mod 3), vilket ger att  . Alltså finns endast en undergrupp av ordning 3 och den är normal. På samma sätt får man att det bara finns en undergrupp av ordning 5 och att även den är normal. Då 5 och 3 är relativt prima så är snittet mellan undergruppen trivialt, vilket ger att G är den inre direkta produkten av grupper av ordning 3 och 5, dvs den cykliska gruppen av ordning 15. Alltså finns, upp till isomorfi, endast en grupp av ordning 15.

ReferenserRedigera

Den här artikeln är helt eller delvis baserad på material från engelskspråkiga Wikipedia, Sylow theorems, 14 april 2009.

FotnoterRedigera

  1. ^ Ludwig Sylow (1872). ”Théorèmes sur les groupes des substitutions”. Mathematische Annalen 5: sid. 584-594. https://gdz.sub.uni-goettingen.de/download/pdf/PPN235181684_0005/PPN235181684_0005.pdf.