En pol är inom komplex analys en isolerad singularitet med oändligt gränsvärde.

Gammafunktionens absolutvärde visar poler

Definition

redigera

Låt U vara en öppen delmängd av den komplexa kroppen och låt funktionen f : U \ {a} → ℂ, där a är en punkt i U, vara holomorf. Om det existerar en holomorf funktion g : U → ℂ och ett naturligt tal n sådana att

 

så sägs f ha en pol av ordning n i a. Om n = 1 sägs polen vara en enkel pol.

Exempel

redigera

För linjära bråk sker detta då nämnaren är lika med noll (om täljaren är skild från noll). Exempel:

 

H har en enkel pol i z = 1.

Signalteori

redigera

Inom signalteori och reglerteknik är poler (och nollställen) viktiga. Där beskriver man ofta ett system med överföringsfunktionen från dess insignals Laplacetransform till dess utsignals Laplacetransform. Systemets dynamik avgörs av polernas placering. Om ett system ska vara stabilt får det till exempel inte förekomma poler i högra halvplanet.[1]

Se även

redigera

Referenser

redigera
  1. ^ Glad, Torkel. Reglerteknik: grundläggande teori. Studentlitteratur AB. ISBN 9144178921