Ett ortogonalt komplement är i linjär algebra och funktionalanalys ett underrum i ett inre produktrum som består av alla de element som är ortogonala mot alla elementen i ett givet underrum :

Ändlig dimensionRedigera

I ett ändligtdimensionellt inre produktrum av dimension n är det ortogonala komplementet till ett k-dimensionellt underrum ett underrum av dimension  . Det ortogonala komplementet av det ortogonala komplementet är det ursprungliga rummet:

 

För en m × n-matris, så har kolonnrummet,  , nollrummet,  , och radrummet ,  , följande egenskaper:

 
 

EgenskaperRedigera

Det ortogonala komplementet är alltid en sluten mängd i den metriska topologin, för ändligtdimensionella inre produktrum är detta en enkel följd av att alla underrum är slutna. I oändlighetsdimensionella Hilbertrum finns det underrum som inte är slutna, men deras ortogonala komplement är slutna. Det är ortogonala komplementet till det ortogonala komplenetet av W blir då det slutna höljet av W: