Ett delrum eller underrum inom matematikgrenen topologi är en delmängd till ett topologiskt rum utrustad med en speciell topologi kallad underrumstopologi, delrumstopologi eller relativ topologi inducerad från topologin på hela rummet.

DefinitionRedigera

 
Illustration av delrumstopologi. Rummet X har de öppna mängderna A, B och C.

Givet ett topologiskt rum   så är underrumstopologin   till en delmängd   definierad enligt

 

Det topologiska rummet   kallas då för ett underrum till det topologiska rummet  . Att   verkligen är en topologi följer av:

  1.  
  2.  
  3. För   gäller att   för något U i  . Alltså gäller:
 
 

EgenskaperRedigera

  • Om   är en bas för topolopgin   i X så är
 
en bas för underrumstopologin  .
  • Om   är ett underrum till  ,   och   så gäller att  .
  • De slutna mängderna i ett underrum är exakt de mängder som är snitt mellan underrummet och de slutna mängderna i det större rummet.
  • Om A är ett delrum till S och S är ett delrum till X så är A ett delrum till X med samma topologi.

Ärftliga egenskaperRedigera

En egenskap hos ett topologiskt rum sägs vara ärftlig om det gäller att varje delrum till rummet har egenskapen. Exempelvis är egenskaperna att vara Hausdorffrum och Kolmogorovrum ärftliga.

ExempelRedigera

  • Betrakta de reella talen R med standardtopologin och delmängden av de naturliga talen. Delrumstopologin är då den diskreta topologin.
  • Ta R med standardtopologin och delmängden  . En bas för underrumstopologin är då de mängder som fås som  . Dessa mängder kan få följande utseenden:
 

ReferenserRedigera