Öppna huvudmenyn

Baselproblemet formulerades 1644 av Pietro Mengoli och löstes av Leonhard Euler 1734 (lösningen presenterades 1735 inför Rysslands Vetenskapsakademi[1]). Bernhard Riemann, som var väl insatt i Eulers arbeten, generaliserade mer än hundra år senare detta resultat till vad som idag kallas Riemanns zetafunktion.

Problemet är att finna vad serien

konvergerar mot.

Eulers lösningRedigera

För att visa detta samband utgick Euler från maclaurinutvecklingen av sinus:

 

För ekvationen   blir en rot  , och för övriga gäller enligt ovan:

 
(1)

Med variabelbytet   får vi följande ekvation:

 
(2)

De nollskilda lösningarna till   är   vilket ger   som lösningar till ekvationen ovan.

Detta kombinerade Euler nu med sambandet att om   är rötter till ekvationen   gäller:

 

Tillsammans med ekvation 2 får vi då (  och  ):

 
(3)

Genom att multiplicera detta med   följer att

 

ReferenserRedigera

  1. ^ E41 – De summis serierum reciprocarum
  • Boris Sjöberg. Från Euklides till Hilbert. Åbo Akademis förlag, 2001. ISBN 952-9616-44-9.