Den inversa hyperboliska tangenten (area tangens hyperbolicus, oftast betecknad artanh, arctanh, atanh eller tanh-1) är en matematisk funktion, definierad som inversen till den hyperboliska tangenten. Dess värde ges av

Graf av funktionen y = tanh-1(x).

För reella tal är funktionen definierad i intervallet (-1, 1), där den är monotont växande.

Identiteter och egenskaperRedigera

Att funktionen är invers till den hyperboliska tangenten innebär att

 

Den är en udda funktion:

 

Den har följande Maclaurinserie:

 

Den inversa hyperboliska tangenten har derivatan

 

vars enkla form gör att funktionen ibland dyker upp i integraler. Den obestämda integralen till funktionen själv ges av

 

TillämpningarRedigera

Den inversa hyperboliska tangenten är relaterad till logaritmen av 2 genom att

 

Analogt med Machins formel för π som bygger på den trigonometriska inversa tangenten, kan man härleda formler som får funktionens Maclaurinserie att konvergera mycket snabbt, och därmed gör det möjligt att effektivt beräkna ett stort antal siffror av logaritmen av 2. Gourdon och Sebah (2001) ger flera sådana formler, däribland

 .

Numeriska värdenRedigera

z tanh−1(z)
0 0
0,1 0,10033534773107558064
0,2 0,20273255405408219099
0,3 0,30951960420311171547
0,4 0,42364893019360180686
0,5 0,54930614433405484570
0,6 0,69314718055994530942
0,7 0,86730052769405319443
0,8 1,0986122886681096914
0,9 1,4722194895832202300

KällorRedigera