Absolutkonvergens är en definition inom matematisk analys, angående seriers konvergens. En serie (en oändlig summa) definieras som absolutkonvergent om serien av absolutbeloppet av termerna konvergerar, det vill säga om serien är konvergent. Detta är en användbar definition, då serier med negativa termer analyseras, eftersom många satser gällande konvergens av serier endast gäller för icke-negativa serier.

Det går att visa att om en serie är absolutkonvergent är den även konvergent. Det omvända gäller dock inte nödvändigtvis, utan en serie kan vara konvergent men ej absolutkonvergent och kallas då betingat konvergent.

ExempelRedigera

Serien   är konvergent eftersom den är absolutkonvergent, det vill säga  

Leibnizserien   är betingat konvergent, eftersom serien är konvergent medan den harmoniska serien   är divergent.

Bevis för att en absolutkonvergent serie är konvergentRedigera

Antag att serien   är absolutkonvergent, vilket betyder att serien   är konvergent och att   är reella tal,  . Vi kan göra omskrivningen:  . Då  , gäller att  . Eftersom båda serierna är icke-negativa, och den större serien är konvergent enligt antagandet, så konvergerar även den mindre serien enligt jämförelsekriteriet. Differensen mellan de k:te termerna i de två serierna är då antingen   eller  . Detta innebär:  , vilken därför måste konvergera, eftersom den är en differens av två konvergenta serier.

Detta kan även visas då termerna   är komplexa tal,  . Då gäller att   och att  . Som tidigare innebär detta att serierna   och   är absolutkonvergenta, enligt jämförelsekriteriet. Dessa är då även konvergenta, enligt resonemanget ovan, vilket betyder att serien   också är konvergent. Detta eftersom serien kan skrivas som en summa av två konvergenta serier:  .

ReferenserRedigera

  • Eriksson F, Larsson E, Wahde G. (1996). Matematisk analys med tillämpningar del 3. Andra upplagan.