Tjebysjovfilter
Ett Tjebysjovfilter är inom signalbehandling ett analogt (passivt eller aktivt) eller digitalt låg- eller högpassfilter. Filtret har en branthet som överstiger Butterworthfiltret vid given ordning, men uppvisar i gengäld rippel och större fasvridning i passbandet. Filtret är uppkallat efter Pafnutij Tjebysjov därför att dess matematiska karaktäristik har härletts ur Tjebysjovpolynom.
Rippel
redigeraFilterparametern är relaterad till passbandsripplet i decibel enligt följande
3dB-bandbredden är relaterad till rippel-bandbredden enligt:
Beloppsfunktion
redigeraEtt analogt Tjebysjovlågpassfilter har magnituden:
där är Chebyshevpolynomen definierade av
Överföringsfunktion
redigeraEtt analogt lågpassfilters överföringsfunktion kan allmänt skrivas:
där är förstärkningen vid dc (dvs ).
Vid Chebychevfilter ser de tre första ordningarnas polynom i nämnaren, för 1dB rippel i passbandet, ut som följer ( ):
Exempel: Aktivt analogt andra ordningens lågpassfilter
redigeraKopplingen till höger realiserar ( ):
där alltså
och
När man designar filtret så antar man lämpligtvis kondensatorerna och räknar sedan fram resistorerna.
Filtrets karaktäristik
redigerajw-metoden ger:
vars beloppsfuntion blir
och fasfunktion
Om man sedan sätter får man en relativ uppskattning av filtrets karaktäristik.
Se även
redigeraKällor
redigera- Millman Jacob, Grabel Arvin, Microelectronics, Second Edition, 1988, Singapore
- Texas Instruments, Active Filter Design Techniques, Chapter 16.