Ett Tjebysjovfilter är inom signalbehandling ett analogt (passivt eller aktivt) eller digitalt låg- eller högpassfilter. Filtret har en branthet som överstiger Butterworthfiltret vid given ordning, men uppvisar i gengäld rippel och större fasvridning i passbandet. Filtret är uppkallat efter Pafnutij Tjebysjov därför att dess matematiska karaktäristik har härletts ur Tjebysjovpolynom.

Olika ordningars Tjebysjovfilter med epsilon på 0,7 dvs ett passbandsrippel på 1,7dB.

RippelRedigera

Filterparametern   är relaterad till passbandsripplet   i decibel enligt följande

 

3dB-bandbredden   är relaterad till rippel-bandbredden   enligt:

 

BeloppsfunktionRedigera

Ett analogt Tjebysjovlågpassfilter har magnituden:

 

där   är Chebyshevpolynomen definierade av

 
 

ÖverföringsfunktionRedigera

Ett analogt lågpassfilters överföringsfunktion kan allmänt skrivas:

 

där   är förstärkningen vid dc (dvs  ).

Vid Chebychevfilter ser de tre första ordningarnas polynom i nämnaren, för 1dB rippel i passbandet, ut som följer ( ):

 
 
 

Exempel: Aktivt analogt andra ordningens lågpassfilterRedigera

 
Ett realiseringsexempel

Kopplingen till höger realiserar ( ):

 

där alltså

 

och

 

När man designar filtret så antar man lämpligtvis kondensatorerna och räknar sedan fram resistorerna.

Filtrets karaktäristikRedigera

jw-metoden ger:

 

vars beloppsfuntion blir

 

och fasfunktion

 

Om man sedan sätter   får man en relativ uppskattning av filtrets karaktäristik.

Se ävenRedigera

KällorRedigera