Matrisaddition är inom matematiken operationen att addera två matriser elementvis. Det finns dock en annan operation som kan ses som en slags addition för matriser, den direkta summan .
Den vanliga matrisadditionen är definierad för två matriser av samma dimensionalitet. Resultatet är en ny matris med samma antal rader och kolonner som de ursprungliga matriserna. Summan av två m ×n -matriser A och B , betecknad A + B , är en m ×n -matris beräknad genom att addera motsvarande element, det vill säga
(A + B )[i , j ] = A [i , j ] + B [i, j ]:
A
+
B
=
[
a
11
a
12
⋯
a
1
n
a
21
a
22
⋯
a
2
n
⋮
⋮
⋱
⋮
a
m
1
a
m
2
⋯
a
m
n
]
+
[
b
11
b
12
⋯
b
1
n
b
21
b
22
⋯
b
2
n
⋮
⋮
⋱
⋮
b
m
1
b
m
2
⋯
b
m
n
]
=
=
[
a
11
+
b
11
a
12
+
b
12
⋯
a
1
n
+
b
1
n
a
21
+
b
21
a
22
+
b
22
⋯
a
2
n
+
b
2
n
⋮
⋮
⋱
⋮
a
m
1
+
b
m
1
a
m
2
+
b
m
2
⋯
a
m
n
+
b
m
n
]
{\displaystyle {\begin{aligned}\mathbf {A} +\mathbf {B} &={\begin{bmatrix}a_{11}&a_{12}&\cdots &a_{1n}\\a_{21}&a_{22}&\cdots &a_{2n}\\\vdots &\vdots &\ddots &\vdots \\a_{m1}&a_{m2}&\cdots &a_{mn}\\\end{bmatrix}}+{\begin{bmatrix}b_{11}&b_{12}&\cdots &b_{1n}\\b_{21}&b_{22}&\cdots &b_{2n}\\\vdots &\vdots &\ddots &\vdots \\b_{m1}&b_{m2}&\cdots &b_{mn}\\\end{bmatrix}}=\\&={\begin{bmatrix}a_{11}+b_{11}&a_{12}+b_{12}&\cdots &a_{1n}+b_{1n}\\a_{21}+b_{21}&a_{22}+b_{22}&\cdots &a_{2n}+b_{2n}\\\vdots &\vdots &\ddots &\vdots \\a_{m1}+b_{m1}&a_{m2}+b_{m2}&\cdots &a_{mn}+b_{mn}\\\end{bmatrix}}\\\end{aligned}}\,\!}
Till exempel är
[
1
3
1
0
1
2
]
+
[
0
0
7
5
2
1
]
=
[
1
+
0
3
+
0
1
+
7
0
+
5
1
+
2
2
+
1
]
=
[
1
3
8
5
3
3
]
.
{\displaystyle {\begin{bmatrix}1&3\\1&0\\1&2\end{bmatrix}}+{\begin{bmatrix}0&0\\7&5\\2&1\end{bmatrix}}={\begin{bmatrix}1+0&3+0\\1+7&0+5\\1+2&2+1\end{bmatrix}}={\begin{bmatrix}1&3\\8&5\\3&3\end{bmatrix}}.}
Mängden av alla m ×n -matriser med matrisaddition bildar en abelsk grupp .
För två godtyckliga matriser A (en m × n matris) och B (en p × q matris) definieras den direkta summan av A och B , betecknad
A
⊕
B
{\displaystyle A\oplus B}
, som
A
⊕
B
=
(
a
11
⋯
a
1
n
0
⋯
0
⋮
⋯
⋮
⋮
⋯
⋮
a
m
1
⋯
a
m
n
0
⋯
0
0
⋯
0
b
11
⋯
b
1
q
⋮
⋯
⋮
⋮
⋯
⋮
0
⋯
0
b
p
1
⋯
b
p
q
)
.
{\displaystyle A\oplus B={\begin{pmatrix}a_{11}&\cdots &a_{1n}&0&\cdots &0\\\vdots &\cdots &\vdots &\vdots &\cdots &\vdots \\a_{m1}&\cdots &a_{mn}&0&\cdots &0\\0&\cdots &0&b_{11}&\cdots &b_{1q}\\\vdots &\cdots &\vdots &\vdots &\cdots &\vdots \\0&\cdots &0&b_{p1}&\cdots &b_{pq}\end{pmatrix}}.}
Till exempel är
(
1
3
2
2
3
1
)
⊕
(
1
6
0
1
)
=
(
1
3
2
0
0
2
3
1
0
0
0
0
0
1
6
0
0
0
0
1
)
.
{\displaystyle {\begin{pmatrix}1&3&2\\2&3&1\end{pmatrix}}\oplus {\begin{pmatrix}1&6\\0&1\end{pmatrix}}={\begin{pmatrix}1&3&2&0&0\\2&3&1&0&0\\0&0&0&1&6\\0&0&0&0&1\end{pmatrix}}.}