Delmängdsaxiomet är det axiom inom ZFC som tillåter mängder vars element har en speciell egenskap . I princip säger axiomet att varje definierbar delklass av en mängd är en mängd.

FormuleringRedigera

Givet en mängd A, så finns en mängd B sådan att x är ett element i B om och endast om x är ett element i A och   är sant för x.

När man i matematik vill specificera en sådan mängd B som beskrivs ovan skriver man

 

Se ävenRedigera