Trefassystem är system av tre sinusformade växelspänningar med samma amplitud och som är inbördes fasförskjutna med 2π/3 radianer (120 grader, 360°/3 = 120°).
I Sverige kan man på förbrukarsidan i det allmänna nätet mäta 400 volt mellan linjeledarna (huvudspänning) och 230 volt mellan linjeledare och neutralledare (fasspänning).
HistorikRedigera
Den ryskfödde ingenjören Michail Dolivo-Dobrovolskij skall ha arbetat med tre fasförskjutna växelströmmar redan 1888 och året senare tillverkat en trefasig induktionsmotor. 1959 fastslogs att Dolivo-Dobrovolskij var trefassystemets uppfinnare[1]. Uppfinnaren Jonas Wenström fick svenskt patent år 1890 på trefassystemet[2]. Tvåfassystem (med 90 graders fasförskjutna spänningar) har tidigare haft en viss utbredning i USA men även i Sverige, exempelvis Sandvikens järnverk. Men de blev tidigt ersatta av trefassystem.[källa behövs]
AnvändningRedigera
Trefassystemet används mestadels till elmotorer och då i första hand inom industrin. En fördel med trefassystem är att de tre strängarna i en spänningskälla eller de tre lindningarna i en belastning kan förbindas med varandra så att antalet ledare reduceras.
Det går att dela upp faserna i ett trefassystem och få ut tvåfassystem eller enfassystem där det senare är det för hushållen vanligaste systemet. I hushållen kan dock trefasanslutningar förekomma för bland annat spisar, bastuaggregat och tvättmaskiner.
Ett vanligt förekommande kontaktdon för trefas i hushåll är Perilex.
Roterande magnetfältRedigera
Varje flerfasigt system, kan på grund av fasströmmarnas tidsfördröjning relativt varandra, göra det möjligt att enkelt generera ett magnetiskt fält som varierar med linjefrekvensen. Sådana magnetiska fält gör flerfasiga induktionsmotorer möjliga. När induktionsmotorer måste köras på en enfasig kraftkälla (vanligt förekommande i hushållen) måste motorn tillhandahålla en mekanism för att åstadkomma ett roterande magnetfält, annars kan motorn inte bilda ett vridmoment vid stillastående och kan således ej starta. Fältet från en enkelfasig lindning kan ge energi till en motor som redan roterar men utan någon form av särskild mekanism kan motorn inte accelerera från stillastående.
Ett roterande magnetiskt fält med stabil amplitud, kräver att de tre faserna har lika amplitud och är inbördes förskjutna en tredjedel av varvet. Är detta inte fallet uppstår vibrationer och andra oönskade effekter på motorer och generatorer.
Grundläggande kopplingarRedigera
Y-kopplingRedigera
Tre av ledarnas eller lindningarnas sex uttagsändar är förbundna till en så kallad neutralpunkt (nollpunkt enligt äldre benämning).
Enligt Kirchhoffs första lag är summan av strömmarna i en grenpunkt noll. Neutralpunkten i ett trefassystem är ett exempel på en sådan grenpunkt. Från neutralpunkten går det att ta ut en fjärde ledare, den så kallade neutralledaren (nolledare enligt äldre benämning). Neutralledaren har ett antal viktiga uppgifter, bland annat att begränsa risken för fara vid ett fel. Neutralledaren gör det också möjligt att ansluta belastningar enfasigt i ett trefassystem. Y-koppling kallas även stjärnkoppling.
D-kopplingRedigera
Vid D-koppling är ledarnas eller lindningarnas alla sex uttagsändar förbundna enligt figur 1. Som förbindningssätt för en spänningskälla är D-kopplingen den mest använda för högspänningar då en fjärde ledare inte behövs i systemet. För större belastningar är kopplingssättet vanligt även vid lågspänning eftersom för samma ström i en belastningssträng används huvudspänning i stället för fasspänning.
D-koppling kallas även triangelkoppling eller deltakoppling (Δ-koppling).
Linjeströmmar och fasströmmarRedigera
Om vi utgår från en D-koppling enligt figur 2, så kallas för linjeströmmar och kallas fasströmmar.
Sambanden mellan strömmarna är
Summeras ekvationerna erhålls
Detta samband gäller alltid för treledarsystem oavsett belastningens symmetri. För en Y-koppling är linjeströmmarna desamma som fasströmmarna.
Om inget annat anges är det linjeströmmen som avses när man talar om trefasström.
Huvudspänning och fasspänningRedigera
Av figur 3 framgår att sambandet mellan effektivvärden för huvudspänning och fasspänning kan skrivas
vilket gäller under förutsättning att lasten är symmetrisk.
Effekt i trefassystemRedigera
I system med växelspänning förekommer skenbar effekt vilken har enheten voltampere (VA). Den är sammansatt av aktiv- och reaktiv effekt enligt visardiagrammet till höger.
För ett symmetriskt belastat trefassystem (alla faserna har samma last) beräknas den skenbara effekten som
där
- = Huvudspänningens effektivvärde (V)
- = Fasspänningens effektivvärde (V)
- = Linjeströmmens effektivvärde (A)
- = Fasströmmens effektivvärde (A)
- = Aktiv effekt (W)
- = Reaktiv effekt (var)
Den aktiva respektive reaktiva effekten beräknas som
där
- = fasskillnaden mellan ström och spänning
Den sammanlagda effekten från de tre faserna i ett trefassystem är konstant (vid symmetrisk belastning av de tre faserna) vilket innebär att när effekt dras från ett trefassystem fås alltid samma totala effektuttag, oberoende av var i en period spänningar och strömmar befinner sig vid tillfället. Detta gör att elmotorer får en jämnare gång.
Olika belastning av fasernaRedigera
I det allmänna fallet har inte alla tre faserna samma belastning. Trefasiga elektriska kraftsystem är dock i allmänhet så utnyttjade och uppbyggda att matningsspänningarna i olika belastningspunkter håller sig tämligen konstanta under normala driftsförhållanden. Förklaringen är bland annat att spänningsreglering äger rum. Näten är även utan spänningsstyrning ganska styva vilket innebär att de har små inre spänningsförluster fram till belastningspunkterna. Man kan därför anse att matningsspänningarna i de olika belastningspunkterna bildar en symmetrisk styv (konstant) trefasspänning. Däremot är det vanligt att anslutna belastningar inte är symmetriska varvid vi talar om snedbelastning.
Transformationerna Y till Δ och Δ till YRedigera
Omvandlingarna används för att åstadkomma ekvivalens för nätverk med tre terminaler. För ekvivalens, måste impedansen mellan två terminaler vara densamma för båda nätverken.
Transformation från Δ-last till Y-last för en trefaskretsRedigera
Ekvationerna gäller för både komplexa och reella impedanser.
Transformation från Y-last till Δ-last för en trefaskretsRedigera
Ekvationerna gäller för både komplexa och reella impedanser.
ReferenserRedigera
NoterRedigera
- ^ ”Trefas växelström”. Tekniska Museet. Arkiverad från originalet den 4 februari 2007. https://web.archive.org/web/20070204045737/http://www.tekniskamuseet.se/elkraft/snilleblixtar/trefas.htm. Läst 16 april 2007.
- ^ Bergström och Nordlund, Lars. Ellära- Kretsteknik och fältteori. Naturaläromedel. sid. 283. ISBN 91-7536-330-5
Vidare läsningRedigera
- Spade, Bengt (2008). En historia om kraftmaskiner. Stockholm: Riksantikvarieämbetet. Libris 11173222. ISBN 978-91-7209-501-4 (inb.) s. 369-391.
Externa länkarRedigera
- Wikimedia Commons har media som rör Trefassystem.