Rogers–Ramanujans kedjebråk
Inom matematiken är Rogers–Ramanujans kedjebråk ett kedjebråk upptäckt av Rogers 1894 och oberoende av Srinivasa Ramanujan som är nära relaterad till Rogers–Ramanujan-identiteterna. Den kan skrivas i sluten form för flera olika argument.
DefinitionRedigera
Givet funktionerna i Rogers–Ramanujan-identiteterna,
och
( A003114 och A003106) där betecknar den oändliga q-Pochhammersymbolen, då är Rogers–Ramanujans kedjebråk
Modulära funktionerRedigera
Om q = e2πiτ är och , såsom även deras kvot , modulära funktioner av τ. Eftersom de har heltalskoefficienter, följer det av teorin komplex multiplikation att deras värden för imaginära kvadratisk irrationella τ är algebraiska tal som kan evalueras explicit.
ExempelRedigera
där är det gyllene snittet.
Relation till modulära formerRedigera
Rogers–Ramanujans kedjebråk är relaterad till Dedekinds etafunktion, en modulär form av vikt 1/2, enligt[1]
Relation till j-invariantenRedigera
En formel för j-invarianten är
där
Genom att eliminera eta-kvoten kan j(τ) skrivas med hjälp av som
där täljaren och nämnaren är polynominvarianter av ikosaedern. Genom att använda modulära ekvationerna mellan R(q) och R(q5) kan man bevisa att
som faktiskt är j-invarianten av den elliptiska kurvan
parameteriserad av icke-spetspunktarna av den modulära kurvan .
FunktionalekvationRedigera
Vi använder beteckningen då q = e2πiτ. Medan andra modulära former som j-invarianten satisfierar
och Dedekinds etafunktion satsifierar
innehåller funktionalekvationen för Rogers–Ramanujans kedjebråk[2] det gyllene snittet :
Modulära ekvationerRedigera
Det finns flera intressanta modulära ekvationer mellan och . Några eleganta sådana för små primtal n är:[3]
Låt u = R(q) och v = R(q2). Då är
Låt u = R(q) och v = R(q3). Då är
Låt u = R(q) och v = R(q5). Då är
Låt u = R(q) och v = R(q11) Då är
För n = 5, notera att
Andra resultatRedigera
Ramanujan upptäckte flera intressanta resultat om R(q).[4] Låt , och vara det gyllene snittet.
Om är
Om är
Potenserna av R(q) kan skrivas på intressanta sätt. För dess kub är
För dess femte potens, låt , då är
ReferenserRedigera
- Den här artikeln är helt eller delvis baserad på material från engelskspråkiga Wikipedia, Rogers–Ramanujan continued fraction, 8 maj 2014.
NoterRedigera
- ^ Duke, W. "Continued Fractions and Modular Functions", http://www.math.ucla.edu/~wdduke/preprints/bams4.pdf Arkiverad 2 mars 2014 hämtat från the Wayback Machine.
- ^ Duke, W. "Continued Fractions and Modular Functions" (p.9)
- ^ Berndt, B. et al. "The Rogers–Ramanujan Continued Fraction", http://www.math.uiuc.edu/~berndt/articles/rrcf.pdf
- ^ Berndt, B. et al. "The Rogers–Ramanujan Continued Fraction"
KällorRedigera
- Rogers, L. J. (1894), ”Second Memoir on the Expansion of certain Infinite Products”, Proc. London Math. Soc. s1-25 (1): 318–343, doi:
- Berndt, B. C.; Chan, H. H.; Huang, S. S.; Kang, S. Y.; Sohn, J.; Son, S. H. (1999), ”The Rogers–Ramanujan continued fraction”, Journal of Computational and Applied Mathematics 105: 9, doi:, http://www.math.uiuc.edu/~berndt/articles/rrcf.pdf
Externa länkarRedigera
- Weisstein, Eric W., "Rogers-Ramanujan Identities", MathWorld. (engelska)
- Weisstein, Eric W., "Rogers-Ramanujan Continued Fraction", MathWorld. (engelska)