Öppna huvudmenyn





Circle frame.svg

Fördelningen av de naturliga isotoperna av litium.

  Litium-6 (7,5 %)
  Litium-7 (92,5 %)

Litiumisotoper är isotoper av grundämnet litium (Li), det vill säga atomer och kärnor med 3 protoner och olika antal neutroner.

IsotoperRedigera

Litium har 9 kända isotoper, varav 2 är stabila (6Li och 7Li).

Båda naturliga isotoperna har en oväntat låg kärnbindningsenergi per nukleon (≈ 5,3 MeV) jämfört med de intilliggande lättare och tyngre grundämnena, helium (≈ 7,1 MeV) respektive beryllium (≈ 6,5 MeV). Den mest stabila litiumradioisotopen är 8Li, som har en halveringstid på endast 838 millisekunder. 9Li har en halveringstid på 178 millisekunder, och 11Li har en halveringstid på cirka 8,6 millisekunder. Alla återstående isotoper av litium har halveringstider som är kortare än 10 nanosekunder. Den mest kortlivade kända litiumisotopen är 4Li, som sönderfaller genom protonemission med en halveringstid på cirka 9,1 x 10−23 sekunder, även om halveringstiden av 3Li ännu inte är fastställd, och troligen kommer att vara mycket kortare.

7Li och 6Li är två av de primordiala nukliderna som producerades i Big Bang, där 7Li utgjorde som 10−9 av alla primordiala nuklider och 6Li omkring 10−13.[1] En liten procentandel av 6Li produceras också genom kärnreaktioner i vissa stjärnor. Litiumisotoper separeras något under en mängd olika geologiska processer, inklusive mineralbildning (kemisk fällning och jonbyte). Litiumjoner ersätter magnesium eller järn i vissa oktaedriska platser i leror, och 6Li är ibland att föredra framför 7Li. Detta resulterar i en viss anrikning av 7Li i geologiska processer.

6Li är en viktig isotop inom kärnfysik eftersom tritium produceras när den bombarderas med neutroner.

Litium-4Redigera

Huvudartikel: Litium-4

4Li innehåller tre protoner och en neutron. Det är den mest kortlivade kända litiumisotopen, med en halveringstid av omkring 9,1 x 10−23 sekunder och sönderfaller genom protonemission till 3He.[2] 4Li kan bildas som en mellanprodukt i några kärnfusionsreaktioner.

Litium-5Redigera

Huvudartikel: Litium-5

5Li innehåller tre protoner och två neutroner. Dess halveringstid är 3,047 × 10−22 sekunder och sönderfaller genom protonemission till 4He.

Litium-6Redigera

Huvudartikel: Litium-6

6Li är värdefullt som ett utgångsmaterial för framställning av tritium (3H) och som en absorbator av neutroner i kärnfusionsreaktioner. De naturliga relativa fraktionerna av litium är fördelade sådant att 6Li utgör 7,5 %, medan resten utgörs av 7Li. Stora mängder 6Li har separerats ut för att användas i vätebomber. 6Li är en av endast fyra isotoper med spinn 1 och har den minstt nollskilda nukleära elektriska kvadrupolmomentet för någon stabil kärna.

Litium-7Redigera

Huvudartikel: Litium-7

7Li är i särklass den mest naturligt förekommande litiumisotopen (92,5 %). Den innehåller tre protoner, fyra neutroner och tre elektroner, och är en boson, vilket innebär att dess totala atomiska spinn är ett heltal, vanligen noll. I universum – på grund av de nukleära egenskaperna – är 7Li mindre vanligt än helium, beryllium, kol, kväve och syre, även om de senare fyra alla har tyngre kärnor än litium.

Efter produktion av 6Li, finns det litium kvar som är anrikat i 7Li och utarmat i 6Li. Detta 7Li-anrikat material har sålts kommersiellt och en del av det har släppts ut i miljön. Den relativa förekomsten av 7Li är 35 procent större än det naturliga värdet som har mätts i grundvattnet i en karbonatakvifer under West Valley Creek i Pennsylvania, som ligger nedströms från en litiumbearbetningsanläggning. I utarmat litium, kan den relativa förekomsten av 6Li reduceras till så lite som 20 procent av det nominella värdet, vilket ger en atommassa för urladdat litium som kan variera från cirka 6,94 till 7 atommassenheter. Därför kan isotopsammansättningen av litium variera något beroende på dess källa. En noggrann atommassa för litiumprover kan inte mätas för alla litiumkällor.[3]

7Li kan användas som en del av smält litiumfluorid in smältsaltreaktorer: flytande fluorid-reaktorer. Det stora neutrontvärsnittet av 6Li (cirka 940 barn[4]) – jämfört med neutrontvärsnittet av 7Li (cirka 45 millibarn) – ger hög separation av 7Li från naturligt litium en stark efterfrågan för den möjliga användningen i litiumflouridreaktorer.

Litium-7-hydroxid används för alkalisering av kylvätskan i tryckvattenreaktorer.[5]

En mindre mängd 7Li har producerats, några pikosekunder, som innehåller en lambdapartikel i sin kärna, medan en atomkärna i allmänhet tänkt att innehålla endast neutroner, protoner och pioner.[6][7]

Litium-8Redigera

Huvudartikel: Litium-8

8Li är en radioisotop till litium med en halveringstid på 840,3 millisekunder. Dess kärna består formellt av tre protoner och fem neutroner, men har faktiskt struktur av en halokärna: dess kärna består av två protoner och två neutroner (en 4He-kärna) omgiven av en "halo" bestående av en proton och tre neutroner. Den sönderfaller genom β-sönderfall följt av fission i två 4He-atomer.

Litium-9Redigera

Huvudartikel: Litium-9

9Li är en radioisotop till litium med en halveringstid på 178,3 millisekunder. Dess kärna utgörs av tre protoner och sex neutroner. Den sönderfaller genom β-sönderfall till 9Be samt i 50,8 procent av fallen neutronemission till 8Be.

Litium-10Redigera

Huvudartikel: Litium-10

10Li är en radioisotop till litium med en halveringstid på 2 × 10−21 sekunder. Dess kärna utgörs av tre protoner och sju neutroner. Den sönderfaller genom neutronemission till 9Li. Den förekommer även i två metastabila tillstånd (kärnisomerer), 10m1Li och 10m2Li.

Litium-11Redigera

Huvudartikel: Litium-11

11Li är en radioisotop till litium med en halveringstid på 8,75 millisekunder. Dess kärna är består formellt av tre protoner och åtta neutroner, men har faktiskt en struktur av en halokärna: dess kärna består av tre protoner och sex neutroner (en 9Li-kärna), omgiven av en "halo "bestående av två neutroner. Den har en exceptionellt stor träffyta (3,16 fm), jämförbart med 208Pb. Den sönderfaller genom β-sönderfall till 11Be och i huvudsak genom neutronemission till 10Be.

Litium-12Redigera

12Li har en betydligt kortare halveringstid på 10 nanosekunder. Den sönderfaller genom neutronemission till 11Li, vars sönderfall i sin tur beskrivs ovan.

IsotopseparationRedigera

ColexseprationRedigera

6Li har en större affinitet än 7Li för grundämnet kvicksilver. När en blandning av litium och kvicksilver tillsätts till lösningar innehållande litiumhydroxid, blir 6Li mer koncentrerat i amalgam och 7Li mer i hydroxidlösning.

Colexseparationsmetoden (av engelska column exchange, ”kolonnutbyte”) utnyttjar detta genom att passera en motström av amalgam och hydroxid genom en stegkaskad. Fraktion av 6Li dräneras företrädesvis av kvicksilvret, medan 7Li mestadels är i flöde med hydroxiden. Vid botten av kolonnen, är litiumet (anrikat med 6Li) separerat från amalgamet, och kvicksilvret tillvaratas att återanvändas med färskt råmaterial. Vid toppen är litiumhydroxidlösningen elektrolyserad för att frigöra 7Li-fraktionen. Anrikning som erhålles med denna metod varierar med längden av kolonnen och flödeshastigheten.

VakuumdestillationRedigera

Litium upphettas till cirka 550 °C i ett vakuum. Litiumatomer förångas från vätskeytan och samlas på en kall yta placerad några centimeter ovanför vätskeytan. Eftersom 6Li-atomer har en större fri medelväglängd, samlas de företrädesvis.

Den teoretiska separationseffektiviteten är cirka 8,0 procent. En flerstegsprocess kan användas för att erhålla högre separationsgrader.

TabellRedigera

Nuklid Z N Massa (u) Halveringstid ST (%) SE (MeV) SP Spinn Förekomst (%)
Excitationsenergi (keV)
4Li
3
1
4,02719(23) 9,1 × 10−23 s p 6,03 3He
2
5Li
3
2
5,01254(5) 3,047 × 10−22 s p 1,97 4He
32
6Li
3
3
6,015122795(16)
Stabil
1+
7,5
7Li
3
4
7,01600455(8)
Stabil
32
92,5
8Li
3
5
8,02248736(10) 840,3 ms β 16,004 8Be
2+
9Li
3
6
9,0267895(21) 178,3 ms β + n (50,8 %) 11,941 8Be
32
β (49,2 %) 13,606 9Be
10Li
3
7
10,035481(16) 2 × 10−21 s n 0,42 9Li
(1,2)
10m1Li
200(40)
2 × 10−21 s
1+
10m2Li
480(40)
2 × 10−21 s
2+
11Li
3
8
11,043798(21) 8,75 ms β + n (84,9 %) 20,61 10Be
32
β (8,07 %) 20,11 11Be
β + 2n (4,1 %) 9Be
β + 3n (1,9 %) 8Be
β + α (1 %) 7He, 4He
β + fission (0,014 %) 8Li, 3He
β + fission (0,013 %) 9Li, 2He
12Li
3
9
12,05378(107)# 10 ns n 1,227 11Li
Anmärkningar
  • Stabila isotoper anges i fetstil.
  • Värden markerade med # härrör inte enbart från experimentella data, men åtminstone delvis från systematiska trender.
  • Osäkerheter anges i kort form i parentes efter värdet. Osäkerhetsvärden anger en standardavvikelse, utom isotopsammansättningen och standardatommassa från IUPAC, som använder expanderade osäkerhet.
  • Nuklidmassor är givna av IUPAP Commission on Symbols, Units, Nomenclature, Atomic Masses and Fundamental Constants (SUNAMCO).
  • Isotopförekomster är givna av IUPAC Commission on Isotopic Abundances and Atomic Weights.

SönderfallskedjorRedigera

Medan β-sönderfall till berylliumisotoper (ofta i kombination med en eller flera neutronemissioner) dominerar över tyngre litiumisotoper, sönderfaller 10Li och 12Li via neutronemission till 9Li respektive 11Li, på grund av sina positioner ovanför neutrondropplinjen. 11Li har även observerats att sönderfalla via flera former av fission. Lättare litiumisotoper (<6Li) är endast kända för sönderfall via protonemission. Sönderfallstyperna hos de två isomererna av 10Li är okända.

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Se ävenRedigera

KällorRedigera

  1. ^ BD Fields "The Primordial Lithium Problem", Annual Reviews of Nuclear and Particle Science 2011
  2. ^ ”Isotopes of Lithium”. Isotopes of Lithium. http://periodictable.com/Isotopes/003.4/index2.full.dm.html. Läst 20 oktober 2013. 
  3. ^ T. B. Coplen, J. A. Hopple, J. K. Böhlke, H. S. Peiser, S. E. Rieder, H. R. Krouse, K. J. R. Rosman, T. Ding, R. D. Vocke, Jr., K. M. Révész, A. Lamberty, P. Taylor, P. De Bièvre. "Compilation of minimum and maximum isotope ratios of selected elements in naturally occurring terrestrial materials and reagents", U.S. Geological Survey Water-Resources Investigations Report 01-4222 (2002). As quoted in T. B. Coplen (2002). ”Isotope-Abundance Variations of Selected Elements (IUPAC technical report)”. Pure and Applied Chemistry 74 (10): sid. 1987–2017. http://pac.iupac.org/publications/pac/pdf/2002/pdf/7410x1987.pdf. 
  4. ^ Norman E. Holden (January–February 2010). The Impact of Depleted 6Li on the Standard Atomic Weight of Lithium. International Union of Pure and Applied Chemistry. http://www.iupac.org/publications/ci/2010/3201/3_holden.html. Läst 6 maj 2014. 
  5. ^ Managing Critical Isotopes: Stewardship of Lithium-7 Is Needed to Ensure a Stable Supply, GAO-13-716 // U.S. Government Accountability Office, 19 September 2013; pdf
  6. ^ John Emsley (2001). Nature's Building Blocks: An A-Z Guide to the Elements. Oxford University Press. sid. 234–239. ISBN 978-0-19-850340-8. http://books.google.com/books?id=j-Xu07p3cKwC&pg=PA239 
  7. ^ Geoff Brumfiel (1 March 2001). ”The Incredible Shrinking Nucleus”. Physical Review Focus. doi:10.1103/PhysRevFocus.7.11. http://physics.aps.org/story/v7/st11. 

Externa länkarRedigera

  • Lewis, G. N.; MacDonald, R. T. (1936). ”The Separation of Lithium Isotopes”. Journal of the American Chemical Society 58 (12): sid. 2519. doi:10.1021/ja01303a045.