För det språkvetenskapliga begreppet, se Tautologi (språkvetenskap).

Tautologi är en benämning på en sats inom satslogiken, som är sann för varje tillordning av sanningsvärden till dess satssymboler.[1] Ludvig Wittgenstein introducerade begreppet 1921 i verket Tractatus Logico-Philosophicus. Negationen av en tautologi är en kontradiktion.[2]

Deduktion
Tautologi | Kontradiktion
Sann | Giltig | Sund
Modallogik
Logisk sanning | Logisk omöjlighet
Nödvändighet | Möjlighet
Härledningsbegrepp
Närliggande begrepp

Översikt och definition redigera

Att en sats S i satslogiken är en tautologi, skrivs med symboler:   . Ett enkelt exempel på en satslogisk tautologi är:   , som uttrycker den språkliga satsen: A eller icke-A.

Emil L. Post visade att det satslogiska systemet PS med språket P är semantiskt fullständigt och därmed att varje tautologi S, i det satslogiska språket P är ett teorem i systemet PS, vilket symboliskt kan uttryckas enligt följande: Om  , så  .

Trots att den logiska betydelsen av ordet "tautologi" är helt skild från den äldre rent språkliga betydelsen av ordet, är sammanblandning av de två begreppen vanlig.[3]

Begreppet tautologi är ursprungligen definierat i satslogiken, men har även utvidgats till predikatlogiken, på så sätt att satslogikens satssymboler ersätts med predikatlogiska formler.

Eftersom   är en tautologi i satslogiken, så är exempelvis:

  en tautologi i predikatlogiken.

I satslogiken är alla satslogiskt giltiga formler även tautologier, vilket dock inte gäller i predikatlogiken eller generellt i första ordningens logik. Exempelvis är satsen:

 

satslogiskt giltig, men inte en tautologi eftersom den motsvaras av den satslogiska satsen

 , som inte är en tautologi.[4]

Exempel på tautologier redigera

De satslogiska konnektiven har följande proritetsordning:  . A, B och C är satssymboler.

Formel Naturligt språk Kommentar
  Negering av icke-A är detsamma som A Reduktion av dubbel negation
  A eller icke-A Formeln är ett sätt att uttrycka lagen om det uteslutna tredje.
  Om A implicerar B så implicerar icke-B icke-A, och omvänt. Formeln uttrycker kontraposition
  Om icke-A implicerar både B och dess negation icke-B, så följer att icke-A är falskt, och således att A är sant. Formeln visar den princip som också kallas reductio ad absurdum.
  Om inte både A och B, så icke-A eller icke-B, och omvänt. Formeln uttrycker en av de Morgans lagar.
  Om A implicerar B och B implicerar C, så implicerar A, C. Formeln är ett exempel på en syllogism.
  Om åtminstone A eller B är sant, och om båda implicerar C, så måste C också vara sant. Formeln är ett exempel på uteslutningsmetoden.

Se även redigera

Referenser redigera

Noter redigera

  1. ^ Alonzo Church, Introduction to Mathematical Logic. Princeton University Press, 1956.
  2. ^ Jean van Heijenoort, From Frege to Gödel, A Source Book in Mathematical Logic, Harvard University Press 1967.
  3. ^ Richard von Mises, Positivism: A Study in Human Understanding, Cambridge University Press 1951.
  4. ^ Geoffrey Hunter, Metalogic, An Introduction to the Metatheory of Standard First-Order Logic, MacMillan, London 1971.

Källor redigera

  • Raymond M. Smullyan, First-Order Logic, Springer-Verlag, Berlin, Heidelberg, New York, 1968.
  • Stephen Cole Kleene, Mathematical Logic, Wiley and Sons, New York 1967.
  • Geoffrey Hunter, Metalogic, An Introduction to the Metatheory of Standard First-Order Logic, MacMillan, London 1971.